23 Aralık 2007 Pazar

Shallow Water Equations

Output from a shallow water equation model of water in a bathtub. The water experiences five splashes which generate surface gravity waves that propagate away from the splash locations and reflect off of the bathtub walls.

The shallow water equations (also called Saint Venant equations after Adhémar Jean Claude Barré de Saint-Venant) are a set of equations that describe the flow below a horizontal pressure surface in a fluid. The flow these equations describe is the horizontal flow caused by changes in the height of the pressure surface of the fluid. Shallow water equations can be used in atmospheric and oceanic modelling, but are much simpler than the primitive equations. Shallow water equation models have only one vertical level, so they cannot encompass any factor that varies with height.

* u is the zonal velocity (or velocity in the x dimension).
* v is the meridional velocity (or velocity in the y dimension).
* H is the mean height of the horizontal pressure surface.
* η is the deviation of the horizontal pressure surface from its mean.
* g is the acceleration of gravity.
* f is the term corresponding to the Coriolis force, and is equal to 2Ω sin(φ), where Ω is the angular rotation rate of the Earth (π/12 radians/hour), and φ is the latitude.
* b is the viscous drag.

Hiç yorum yok: