In quantum computing, a qubit or quantum bit is a unit of quantum information —the quantum analogue of the classical bit —with additional dimensions associated to the quantum properties of a physical atom. The physical construction of a quantum computer is itself an arrangement of entangled atoms, and the qubit represents both the state memory and the state of entanglement in a system. A quantum computation is performed by initializing a system of qubits with a quantum algorithm —"initialization" here referring to some advanced physical process that puts the system into an entangled state.

The qubit is described by a state vector in a two-level quantum-mechanical system, which is formally equivalent to a two-dimensional vector space over the complex numbers.

**Quantum Computer**

A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. Quantum computers are different from traditional computers based on transistors. The basic principle behind quantum computation is that quantum properties can be used to represent data and perform operations on these data. A theoretical model is the quantum Turing machine, also known as the universal quantum computer.

Although quantum computing is still in its infancy, experiments have been carried out in which quantum computational operations were executed on a very small number of qubits (quantum bit). Both practical and theoretical research continues, and many national government and military funding agencies support quantum computing research to develop quantum computers for both civilian and national security purposes, such as cryptanalysis.

If large-scale quantum computers can be built, they will be able to solve certain problems much faster than any current classical computers (for example Shor's algorithm). Quantum computers don't allow the computations of functions that are not theoretically computable by classical computers, i.e. they do not alter the Church–Turing thesis. The gain is only in efficiency.

## Hiç yorum yok:

Yorum Gönder